GK/QT/3d-cube/mywindow.cpp
Dawid Pietrykowski 47e5eca456 Finished 3D-1
2023-06-13 21:00:54 +02:00

431 lines
11 KiB
C++

// Dolaczamy plik naglowkowy naszej klasy MyWindow
#include "mywindow.h"
// Dolaczamy plik naglowkowy zawierajacy definicje GUI
// Plik ten jest generowany automatycznie
// z pliku XML "mywindow.ui"
#include "ui_mywindow.h"
#include <cmath>
#include <QColor>
#include <QDebug>
#include <QColorDialog>
#include <iostream>
#include <float.h> // for float,double macros
#include <string.h>
#include <stack>
#include <vector>
#define PI 3.1415
const int VIEW_SIZE = 4.0f;
std::vector<float> matrixMul(std::vector<float> p, std::vector<float> m)
{
std::vector<float> res(4);
for(int i = 0; i < 4; i++)
{
res.push_back(0);
for(int j = 0; j < 4; j++)
{
res[i] += m[i * 4 + j] * p[j];
}
}
return res;
}
std::vector<float> MyWindow::GetXY(Point p, std::vector<float> m)
{
std::vector<float> res(3);
float d = 5;
float x = (p.x * d) / (p.z + d);
float y = (p.y * d) / (p.z + d);
float z = 0;
x = ((x + VIEW_SIZE / 2.0f) / VIEW_SIZE * szer );
y = ((y + VIEW_SIZE / 2.0f) / VIEW_SIZE * wys);
return std::vector<float>{x, y, z};
}
std::vector<float> matrixMul3x3(std::vector<float> m1, std::vector<float> m2)
{
std::vector<float> res(9, 0);
for(int i = 0; i < 3; i++)
{
for(int j = 0; j < 3; j++)
{
for(int k = 0; k < 3; k++)
{
res[i * 3 + j] += m1[i * 3 + k] * m2[k * 3 + j];
}
}
}
return res;
}
std::vector<float> matrixMul4x4(std::vector<float> m1, std::vector<float> m2)
{
std::vector<float> res(16, 0);
for(int i = 0; i < 4; i++)
{
for(int j = 0; j < 4; j++)
{
for(int k = 0; k < 4; k++)
{
res[i * 4 + j] += m1[i * 4 + k] * m2[k * 4 + j];
}
}
}
return res;
}
// Definicja konstruktora, wywolujemy najpierw
// konstruktor klasy nadrzednej, nastepnie tworzymy
// obiekt klasy Ui_MyWindow reprezentujacy GUI
MyWindow::MyWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MyWindow)
{
// Wywolujemy funkcje tworzaca elementy GUI
// Jej definicja znajduje sie w pliku "ui_mywindow.h"
ui->setupUi(this);
// Pobieramy wymiary i wspolrzedne lewego gornego naroznika ramki
// i ustawiamy wartosci odpowiednich pol
// Uwaga: ramke "rysujFrame" wykorzystujemy tylko do
// wygodnego ustaiwenia tych wymiarow. Rysunek bedziemy wyswietlac
// bezposrednio w glownym oknie aplikacji.
szer = ui->rysujFrame->width();
wys = ui->rysujFrame->height();
poczX = ui->rysujFrame->x();
poczY = ui->rysujFrame->y();
// Tworzymy obiekt klasy QImage, o odpowiedniej szerokosci
// i wysokosci. Ustawiamy format bitmapy na 32 bitowe RGB
// (0xffRRGGBB).
img = new QImage(szer,wys,QImage::Format_RGB32);
loaded_img = new QImage("/Users/dawidpietrykowski/Desktop/projects/umk/GK/QT/2d-transformations/p.png");
rotation_angle = 0;
translation_vec.push_back(0);
translation_vec.push_back(0);
translation_vec.push_back(0);
rotation_vec.push_back(0);
rotation_vec.push_back(0);
rotation_vec.push_back(0);
// points[0] = Point(-1.0f, -1.0f, 0.0f);
// points[1] = Point(1.0f, -1.0f, 0.0f);
// points[2] = Point(1.0f, 1.0f, 0.0f);
// points[3] = Point(-1.0f, 1.0f, 0.0f);
// points[4] = Point(-1.0f, -1.0f, 0.0f);
// points[5] = Point(1.0f, -1.0f, 0.0f);
// points[6] = Point(1.0f, 1.0f, 0.0f);
// points[7] = Point(-1.0f, 1.0f, 0.0f);
scale_vec.push_back(1.0f);
scale_vec.push_back(1.0f);
scale_vec.push_back(1.0f);
sh_vec.push_back(0.0f);
sh_vec.push_back(0.0f);
UpdateImage();
}
// Definicja destruktora
MyWindow::~MyWindow()
{
delete ui;
}
// Funkcja (slot) wywolywana po nacisnieciu przycisku "Wyjscie" (exitButton)
// Uwaga: polaczenie tej funkcji z sygnalem "clicked"
// emitowanym przez przycisk jest realizowane
// za pomoca funkcji QMetaObject::connectSlotsByName(MyWindow)
// znajdujacej sie w automatycznie generowanym pliku "ui_mywindow.h"
// Nie musimy wiec sami wywolywac funkcji "connect"
void MyWindow::on_exitButton_clicked()
{
// qApp to globalny wskaznik do obiektu reprezentujacego aplikacje
// quit() to funkcja (slot) powodujaca zakonczenie aplikacji z kodem 0 (brak bledu)
qApp->quit();
}
void MyWindow::on_slider_tx_valueChanged(int val){
translation_vec[0] = 4.0f * (val / 100.0f - 1.0f);
}
void MyWindow::on_slider_ty_valueChanged(int val){
translation_vec[1] = 4.0f * (val / 100.0f - 1.0f);
}
void MyWindow::on_slider_tz_valueChanged(int val){
translation_vec[2] = 4.0f * (val / 100.0f - 1.0f);
}
void MyWindow::on_slider_rx_valueChanged(int val){
rotation_vec[0] = val;
}
void MyWindow::on_slider_ry_valueChanged(int val){
rotation_vec[1] = val;
}
void MyWindow::on_slider_rz_valueChanged(int val){
rotation_vec[2] = val;
}
void MyWindow::on_slider_sx_valueChanged(int val){
scale_vec[0] = 1.0f + (4.0f * (( val / 100.0f ) - 1.0f));
}
void MyWindow::on_slider_sy_valueChanged(int val){
scale_vec[1] = 1.0f + (4.0f * (( val / 100.0f ) - 1.0f));
}
void MyWindow::on_slider_sz_valueChanged(int val){
scale_vec[2] = 1.0f + (4.0f * (( val / 100.0f ) - 1.0f));
}
void MyWindow::on_slider_shx_valueChanged(int val){
sh_vec[0] = val / 100.0f - 1.0f;
}
void MyWindow::on_slider_shy_valueChanged(int val){
sh_vec[1] = val / 100.0f - 1.0f;
}
void MyWindow::UpdateImage(){
float sina;
float cosa;
std::vector<float> translate_mat = {
1, 0, 0, translation_vec[0],
0, 1, 0, translation_vec[1],
0, 0, 1, translation_vec[2],
0, 0, 0, 1,
};
std::vector<float> scale_mat = {
scale_vec[0], 0, 0, 0,
0, scale_vec[1], 0, 0,
0, 0, scale_vec[2], 0,
0, 0, 0, 1,
};
sina = sin(rotation_vec[0] * 0.01745329252f);
cosa = cos(rotation_vec[0] * 0.01745329252f);
std::vector<float> rotation_mat_x = {
1, 0, 0, 0,
0, cosa, -sina, 0,
0, sina, cosa, 0,
0, 0, 0, 1
};
sina = sin(rotation_vec[1] * 0.01745329252f);
cosa = cos(rotation_vec[1] * 0.01745329252f);
std::vector<float> rotation_mat_y = {
cosa, 0, sina, 0,
0, 1, 0, 0,
-sina, 0, cosa, 0,
0, 0, 0, 1
};
sina = sin(rotation_vec[2] * 0.01745329252f);
cosa = cos(rotation_vec[2] * 0.01745329252f);
std::vector<float> rotation_mat_z = {
cosa, -sina, 0, 0,
sina, cosa, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
};
std::vector<float> sh_mat = {
1, 0, sh_vec[0], 0,
0, 1, sh_vec[1], 0,
0, 0, 1, 0,
0, 0, 0, 1,
};
std::vector<float> tansform_mat =
matrixMul4x4(
matrixMul4x4(
matrixMul4x4(
matrixMul4x4(
matrixMul4x4(
scale_mat,
translate_mat),
rotation_mat_x),
rotation_mat_y),
rotation_mat_z),
sh_mat);
ClearImage(img);
int lines = (sizeof(indices)/sizeof(*indices)) / 2;
for(int i = 0; i < lines; i++){
Point P1 = vertices[indices[2*i]];
Point P2 = vertices[indices[2*i + 1]];
Point P1M = Point(matrixMul(P1.GetVector(), tansform_mat));
Point P2M = Point(matrixMul(P2.GetVector(), tansform_mat));
std::vector<float> p1_vec = GetXY(P1M, std::vector<float>{});
std::vector<float> p2_vec = GetXY(P2M, std::vector<float>{});
DrawLine(p1_vec[0], p1_vec[1], p2_vec[0], p2_vec[1], img);
}
update();
}
QColor MyWindow::GetPixel(QImage* img, int x, int y){
QColor res;
int width = img->width();
int height = img->height();
if(x >= width || y >= height || x < 0 || y < 0)
return res;
unsigned char* ptr = img->bits();
res.setBlue(ptr[width*4*y + 4*x]);
res.setGreen(ptr[width*4*y + 4*x + 1]);
res.setRed(ptr[width*4*y + 4*x + 2]);
res.setAlpha(ptr[width*4*y + 4*x + 3]);
return res;
}
QColor mul(float v, QColor c){
int red = (int)(c.red() * v);
if(red > 255) red = 255;
int green = (int)(c.green() * v);
if(green > 255) green = 255;
int blue = (int)(c.blue() * v);
if(blue > 255) blue = 255;
return QColor(red, green, blue);
}
QColor add(QColor c1, QColor c2){
int red = (int)(c1.red() + c2.red());
if(red > 255) red = 255;
int green = (int)(c1.green() + c2.green());
if(green > 255) green = 255;
int blue = (int)(c1.blue() + c2.blue());
if(blue > 255) blue = 255;
return QColor(red, green, blue);
}
QColor MyWindow::GetInterpolatedColor(float x, float y){
float width = loaded_img->width();
float height = loaded_img->height();
float xw = (x * width);
float yw = (y * height);
int x_f = (int) (x * width);
int y_f = (int) (y * height);
int x_c = ceil(x * width);
int y_c = ceil(y * height);
float a = (xw - (float) x_f);
float b = ((yw) - (float) y_f);
QColor P1 = GetPixel(loaded_img, x_f, y_c);
QColor P2 = GetPixel(loaded_img, x_c, y_c);
QColor P3 = GetPixel(loaded_img, x_c, y_f);
QColor P4 = GetPixel(loaded_img, x_f, y_f);
QColor v1 = mul(1.0f - a, P1);
QColor v2 = mul(a, P2);
QColor v3 = mul(a, P3);
QColor v4 = mul(1.0f - a, P4);
QColor top = add(v1, v2);
QColor bottom = add(v3, v4);
QColor btop = mul(b, top);
QColor bbottom = mul(1.0f - b, bottom);
QColor res = add(btop, bbottom);
return res;
}
// Funkcja "odmalowujaca" komponent
void MyWindow::paintEvent(QPaintEvent*)
{
// Obiekt klasy QPainter pozwala nam rysowac na komponentach
QPainter p(this);
UpdateImage();
// Rysuje obrazek "img" w punkcie (poczX,poczY)
// (tu bedzie lewy gorny naroznik)
p.drawImage(poczX,poczY,*img);
}
void MyWindow::DrawLine(int x1, int y1, int x2, int y2, QImage *img){
if(x1 > x2){
std::swap(x1, x2);
std::swap(y1, y2);
}
float diff = x2 - x1;
float a = diff != 0 ? (y2 - y1) / diff : FLT_MAX;
// QColor color(255, 255, 255, 255);
QColor color(255, 0, 80, 255);
if(abs(a) < 1.0f){
for(int x = x1; x <= x2; x++){
int x_form = x - x1;
int y = a * x_form + y1;
DrawPixel(img, x, y, color);
}
}
else{
if(y1 > y2){
std::swap(x1, x2);
std::swap(y1, y2);
}
float diff = x2 - x1;
float a = diff != 0 ? (y2 - y1) / diff : FLT_MAX;
for(int y = y1; y <= y2; y++){
int y_form = y - y1;
int x = ((float)(y_form) / a) + x1;
DrawPixel(img, x, y, color);
}
}
}
void MyWindow::DrawPixel(QImage* img, int x, int y, QColor color){
if(x >= szer || y >= wys || x < 0 || y < 0)
return;
unsigned char* ptr = img->bits();
ptr[szer*4*y + 4*x] = color.blue();
ptr[szer*4*y + 4*x + 1] = color.green();
ptr[szer*4*y + 4*x + 2] = color.red();
ptr[szer*4*y + 4*x + 3] = color.alpha();
}
void MyWindow::ClearImage(QImage *img){
unsigned char* empty_val = (unsigned char*)malloc(4);
empty_val[0] = 15;
empty_val[1] = 15;
empty_val[2] = 15;
empty_val[3] = 255;
unsigned char* ptr = img->bits();
for(int i = 0; i < img->width(); i++){
for(int j = 0; j < img->height(); j++){
memcpy(ptr + 4 * (i + j * img->width()), empty_val, 4);
}
}
}